A divisor problem, I
نویسندگان
چکیده
منابع مشابه
Generalized divisor problem
In 1952 H.E. Richert by means of the theory of Exponents Pairs (developed by J.G. van der Korput and E. Phillips ) improved the above O-term ( see [8] or [4] pag. 221 ). In 1969 E. Krätzel studied the three-dimensional problem. Besides, M.Vogts (1981) and A. Ivić (1981) got some interesting results which generalize the work of P.G. Schmidt of 1968. In 1987 A.Ivić obtained Ω-results for ∫ T 1 ∆ ...
متن کاملOn Dirichlet ' S Divisor Problem
tact, whereas those for a = 0.02 imply only 25% more frequent contacts than the all-ornone hypothesis but with rather high though rapidly diminishing attack rates. 10 Schuman and Doull, Amer. Jour. Pub. Health, 30, Supplement to March, 1940, p. 21, state: "From these estimates of carrier prevalence and froni the average annual increment in Shick-negatives, an estimate may be made of the number ...
متن کاملGeneralizing the Titchmarsh Divisor Problem
Let a be a natural number different from 0. In 1963, Linnik proved the following unconditional result about the Titchmarsh divisor problem ∑ p≤x d(p− a) = cx + O ( x log log x log x ) where c is a constant dependent on a. Titchmarsh proved the above result assuming GRH for Dirichlet L-functions in 1931. We establish the following asymptotic relation: ∑ p≤x p≡a mod k d ( p− a k ) = Ckx + O ( x l...
متن کاملA Geometric Variant of Titchmarsh Divisor Problem
We formulate a geometric analogue of the Titchmarsh Divisor Problem in the context of abelian varieties. For any abelian variety A defined over Q, we study the asymptotic distribution of the primes of Z which split completely in the division fields of A. For all abelian varieties which contain an elliptic curve we establish an asymptotic formula for such primes under the assumption of GRH. We e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1993
ISSN: 0386-2194
DOI: 10.3792/pjaa.69.155